$\log \frac{\pi}{p} = 1.75 \log \frac{\tau}{T} + \alpha' \left[\left(\frac{\tau}{T} - 1 \right) - \frac{1}{2.36} \left(1 - \frac{T}{\tau} \right) \right]$ was found to agree satisfactorily with the results of observation. The values of α' have been determined for as many substances as possible. The values are found to increase quite regularly in proportion to the complexity of the molecule, being smallest for hydrogen and the monatomic gases and greatest for the associated alcohols of high molecular weight. It has been shown that these values may be represented by an equation

 $M\alpha' = 42l + 1.9m + 41n + \dots$

where M is the molecular weight of the substance and l, m, n, \ldots are the number of atoms of the elements, carbon, hydrogen, oxygen,....respectively in the molecule.

BERLIN, March, 1906.

THE RELATION OF HEAT OF VAPORIZATION TO BOILING-POINT.

BY EUGENE C. BINGHAM. Received March 27, 1906.

TROUTON'S rule states that the quotient of the molecular heat of vaporization divided by the absolute temperature of the boilingpoint is a constant. This has been accepted as approximately true for normal substances. Acetic acid, however, gives an abnormally small value, which is accounted for by van't Hoff¹ by the fact that the molecules of acetic acid are largely associated both in the liquid and vapor, which would cause the true molecular heat of vaporization to be much larger than the one found. In the case of ethyl alcohol, the vapor is normal but the liquid is associated, so the breaking down of association being connected with an absorption of heat accounts for the abnormally high value of this substance.

More recently Nernst² has pointed out that even among unassociated compounds, the values of this quotient increase considerably with the temperature, if we only choose substances boiling at widely different temperatures. Nernst gave, as a closer approximation to the true values, the equation:

$$\frac{\lambda'}{T_{\circ}} = 8.5 \log T_{\circ},$$

¹ Theor. Chemie, Vol. III, p. 54, 2d ed.

² Nachrichten Kgl. Ges. Wiss. Göttingen, 1906.

where T_{o} is the boiling-point and λ' the molecular heat of vaporization.

This approximation is shown by the following table taken from Nernst's paper:¹

		1 A	BLĘ I.					
		λ						
	$\underline{\mathbf{T_1}}$ + $\underline{\mathbf{T_2}}$	I - p				λ'		
Substance.	2	π	\mathbf{T}_{0} .	λ' calc.	λ' obs.	\mathbf{T}_0	8.5 $\log T_0$.	
Hydrogen	20.4	229						
Hydrogen	18.1	234	20.4	213	•••••	10.4	11.1	
Nitrogen	76.7	14 2 8						
Nitrogen	73.9	1446	77.5	1386	1334	17.9	10.1	
Argon	87.1	1445	87	1418	•••••	16.3	16.5	
Oxygen	9 0.1	1692		- ((-				
Oxygen	83.6	1719	90.0	1000	1629	18.3	10.7	
Hydrochloric acid	190	3542	190	3500		18.4	19.4	
Hydrogen sulphide	213	4620	213	4580	•••••	21.5	19.8	
Carbon disulphide	27 3	6766			<i>.</i> .			
Carbon disulphide	318	6580	319	6490	6384	20.4	21.2	
Ether	273	7088						
Ether	308	6626	307	6440	6660	21.0	21.3	
Benzene	353	7640	353	7490	7254	21.2	21.7	
Propyl acetate	373	8570	375	8310	8000	22.2	21.8	
Aniline	455	10740	457	10540	•••••	23.1	22.6	

Following Prof. Nernst's suggestion, I have examined a large number of substances in order to throw light on this relation, and if possible to derive a more accurate one. I have calculated the heat of vaporization by means of a formula devised by Nernst,¹

 $\frac{\lambda}{1-\frac{p}{\pi}} = \operatorname{R} \frac{\operatorname{T}_{1}\operatorname{T}_{2}}{\operatorname{T}_{1}-\operatorname{T}_{2}} \ln \frac{p_{1}}{p_{2}},$

where R is the gas constant, π the critical pressure, and \dot{p} , \dot{p}_1 , \dot{p}_2 , the vapor-pressures at the temperatures T, T_1 , T_2 , respectively, and where T_1 and T_2 are taken near enough together so that their arithmetical and geometrical means are practically identical. As is seen in the following tables, the values thus calculated for λ' are in very satisfactory agreement with those obtained by direct observation and given under λ' obs. Only in a few cases marked with a * are the values of λ' uncertain, as shown by the irregularity of the temperature coefficients as calculated. In a few cases marked by a \dagger it was necessary to estimate the critical pressure

¹ Loc. cit.

724

	$T_1 + T_2$	$\frac{\lambda}{p}$					λ′	λγ'.				
Substance.	2	1π	π atm.	Тo	λ' calc.	λ' obs.	Ť	$\overline{T_o}^{ODS}$	8.5 log T _o .	17+0.011 T	Diff.	
Hydrogen	20.5	225.97										
Hydrogen	20,27	221.33	14.2	20.4	204	•••••	10.0	•••••	11.1	17.2	- 7.2	
Nitrogen	75.4	144.2							- (-	0		
Nitrogen	79.5	134.5	27.5	77.51	1302	1334	17.0	17.2	10.1	17.8	0,2	
*Carbon monoxide	87.3	170.3		0	-0-0		_0_		6 -			
*Carbon monoxide	99. 8	9 69	35.5	83.0	1890	••••••	18.1	•••••	16.5	17.9	0.2	HH
Argon	86.33	1478		96 -	(-					0		Ā
Argon	87.02	1450	52.9	0.06	1400	•••••	17.0	•••••	16.4	10.0	1.0	0
Oxygen	89.35	1700	0				0	-0	-1 -	18.0		Ť
Oxygen	81.83	1735	50.8	90.0	1004	1629	18.3	18.0	16.7		0.3	VA
Methane	107.6	1994		108.3			0			-0 -		- PC
Methane	114.7	1959.6	55.2		1951	•••••	18.0	•••••	17.3	18.2	0.2	Ř
Krypton	121.6	2315					-0 -			0		ΞA
Krypton	113	3085	54-3	121.3	2270	•••••	18.7	•••••	17.7	18.3	0.4	H
Xenon	163.9	3020	57.2	163.9	2970	•••••	18.1	•••••	18.8	18.8	— o.7	g
*Hydrochloric acid	190	3542	86.o	190	3500		18.4		19.4	19.1	0.7	•
*Hydrogen sulphide	213	4620	92.0	213	4580		21.5	•••••	19.8	19.3	2.2	
*Hydrogen selenide	231	4608	91.0	231	4562	•••••	19.8	•••••	20. I	19.5	0.3	
						$T_1 = 284$						
*Ammonia	236	3923	107.6	236	3960	4950	17.0	17.4	20,2	19.6	2.6	
*Propane	241	3514	4.4	226	4000		17.0		20.0	10.6	26	
*Propane	261	4043	44	∡ე0	4000	•••••	17.0	•••••	20 . 2	19.0	2.0	
Ether	308	6643	25 61	207	6466	6660	21 I		07.0	00.4	0.7	
Ether	297	6744	33.01	307	0400	0000	21.1	21.7	21,2	20.4	0.7	72

TABLE II.¹

N S

1 A 10 T 1	TT to	Continued	
TURR	E/ 11	-continuca.	

		λ.					2/	<u>ک</u> ر				
Substance.	$\frac{T_1 + T_2}{2}$	$I - \frac{P}{\pi}$	π atm.	Т _о .	λ' calc.	λ' obs.	To	$\frac{\pi}{T_o}$ obs.	8.5 log T _o .	17+0.011 T.	Diff.	
Pentane	. 308	6739		400 F	6.60		20.0		21.2	20.4	0.5	
Pentane	. 298	6612	33.03	309.5	0409		20.9	•••••	21.2	20.4	0.5	
Carbon disulphide	. 318	6598	9	110	6400	6284	20.4	20.0	21.2	20.5	0. I	
Carbon disulphide	. 328	6561	11.0	319	0490	0304	20.4	20.0	5	2003		
Acetone	338	6836	60.0	110 5	6850	7266	20.8	22.0	21.1	20.6	0.2	
Acetone	328	6988	00.0	329.3	0050	/200	-0.0					EUGENE
Diisopropyl	318	7067	20 72	221	6627		20.0		21.4	20.6	0.6	
Diisopropyl	328	6895	30.72	33-	0027				•			
Chloroform	333	7351	I 54.0	334	7177	6984	21.5	20.9	21.5	20.7	o .8	
Chloroform	338	7147	34.3	334	7-11		0	,	Ū	•		6
Hexane	- 343	7358	29.62	342	7140	6838	20.9	20.0	21.5	20.8	0.1	BII
Hexane	338	7480		5.	• •	•						G
Carbon tetrachloride		7450	44.97	349-7	7190	7130	20.6	20.4	21.6	20.8	- 0.2	ΗA
Carbon tetrachloride	340	7300 766 r										<u>м</u>
Benzene	353	7005	47.89	353-4	7497	7254	21.2	20.5	21.7	20.9	0.3	
Uevaniethvlene	303	7410										
Hexamethylene	·· 340 258	7000	39.82	353.7	7314	7342	20.7	20.8	21.7	20.9	0.2	
Phenyl fluoride	252	74-9										
Phenyl fluoride	. 261	7838	44.62	358.3	7548	•••••	21.1	•••••	21.7	20.9	0.2	
Heptane	368	8099										
Heptane	373	7965	26.86	371	7720	7407	20.8	20.0	21.8	21.1	0.3	
Diisobutyl	378	8380		~							_	
Diisobutyl	388	8149	2 4.55	381.5	7962	•••••	20.9	•••••	21.9	21.2	0.3	
	-											

TABLE	II-Con	tinued.
-------	--------	---------

		λ										
Substance.	$\frac{T_1+T_2}{2}$	$I - \frac{p}{\pi}$	πatm.	To.	λ' calc.	λ' obs.	$\frac{\lambda'}{\widetilde{T}_{o}}$	$\frac{\lambda'}{T_o}$ obs.	8.5 log T _o .	17+0.011 T ₀ .	Diff.	
Toluene	. 367.5	8826	41.6	383.8	8155	7695	21.3	20,0	22.0	21.2	0,1	
Toluene	. 377.9	8355	4-1-	3-30	00	1.90	0					
Stannic chloride	376.6	8540	36.95	386.9	8221	7962	21.2	20.6	22.0	21.3	0.1	
Stannic chloride	. 392.2	8403	3 35	J,	0		6				~ ~	
Octane	398	8964	24.70	398	8594	809Þ	21.0	20.3	22.1	21.4	0.2	
Phenyl chloride	408	8592	14.62	405	8482		20.9		22. I	21.5	0.6	ΗE
Phenyl chloride	. 398	8875		4-0	-4-		,			-		A
Phenyl bromide	423	9367	44.62	128	0121		21.3	•••••	22.4	21.7	0.4	Ó
Phenyl bromide	. 433	9293	44.0-	7	J		5					H A
Dimethylorthotoluidine	454	10470	30.8	45 4	10130	9490	22. I	2 0.7	22.6	22.0	0.1	Ā
Aniline	. 439.5	11330	50.05	455	10500		22.0		22.6	92 0	1.0	Õ
Aniline	450.9	10900	52.35	457	10,00	•••••	23.0	•••••	22.0	22.0	110	RIS
Phenyl iodide	398	10682	12 62	467.4	0776		20.2		22.6	22. I	I.Q	Ā
Phenyl iodide	458	10054	42.02	401.4	9/20		20,2	•••••	2510	22.1		I
Diethylaniline	. 483.8	11590	†31.0	488 -	10000		<u></u>		22.0	22 A	0.2	ž
Diethylaniline	471.7	1 2 3 8 4	13-+-	400.3	10900	•••••	22.2	•••••	9	22.4	0.2	
Chloraniline	490	12175	t27.0	501.5	11700		23.3		23.0	22.5	o.8	
Chloraniline	496.7	12220	1-1	JJ			00		0	Ū		
p-Nitrotoluene	491.5	12150	†26.6	510.7	11500		22.6		23.0	22.6	0.0	
p-Nitrotoluene	504.2	12680	1	57	5				0			
Chlornaphthalene	. 518.6	11940	t 30. 2	532.3	11600		21.8		23.0	22.8	1.0	
Chlornaphthalene	522.9	12120	13-1-	555					0			
Bromnaphthalene	548.4	1 2 5 2 0	t28.0	554. I	12000		21.6		23.3	23.1	1.5	
Bromnaphthalene	544.5	12600	12013	554.1					55	0	5	727

	** • **	$\frac{\lambda}{\phi}$					2/	<u>ک</u> ر				
Substance	$\frac{1_1+1_2}{2}$	$1-\frac{1}{\pi}$	π atm.	T _o .	λ' calc.	λ' obs.	T _o	T _o obs.	8.5 log T _o .	17 + 0.011 T ₀ .	Diff.	
Methyl formate	298	6999	56.62	305	6924	6 <u>9</u> 60	22.7	22.8	21.1	20.4	2.3	
Methyl formate	308	7061										Ħ
Ethyl formate	328	7396	46 82	177 2	7244	7407	22 T	22.6	21.4	20.6	TE	ď
Ethyl formate	. 338	7317	40.03	327.2		7407	22,1	22.0			1.5	- G
Methyl acetate	. 328	7564	46.29	328	7400	8166	22.6	24.9	21.4	20.6	2.0	Ż
Ethyl acetate	. 348	8047	27.04	250	7584	7785	<u></u>	22.2	27.6	20.8	та	С. В
Ethyl acetate	358	7787	37-94	320	7704	1105	22.2		21.0		1.4	
Propyl formate	. 348	8143	40.05	2512	7821	7510	22 T	21.2	21.7	20.0	1.2	IZ
Propyl formate	358	7 9 47	40.05	334	/011	7310	22.1		7	20.9		- 28
Ethyl propionate	368	8650	22.17	251 5	8072	5 870		27.2	ar 8		т Э	A
Ethyl propionate	378	8325	33.17	3/1.7	02/3	7072	22.3	21.2	21.0	21.1	1.2	4
Propyl acetate	. 373	8570	33.17	375	8310	8000	22.2	21.3	21.8	21.1	II	
Methyl butyrate	368	8720		075 O	80.47	-9 8 -		21.0	21.0	27.7	0.0	
Methyl butyrate	. 378	83 8 5	34.21	375.3	0247	7007	22.0	21.0	21.9	21.1	0.9	
Methyl salicylate	. 482	11530	ta8 a	407	11000		22.2		22.0	22.5	0.1	
Methyl salicylate	. 492	11440	20.2	49/	11000	•••••	££.£		23.0	22.0	5.4	

TABLE III.

		λ										
Substance.	$\frac{1+T_2}{2}$	$I = \frac{p}{\pi}$	πatm.	т _о .	λ' calc.	λ' obs.	$\frac{\lambda'}{\overline{T_0}}$	$\frac{\lambda'}{T_0}$ obs.	8.5 log To.	17 + 3.011 T.	Diff.	
Nitric oxide	113	3085	71.2	123.1	3412	•••••	27.7		17.8	18.4	9.3	
Chlorine	127.5	3025										
Chlorine	248	5243	93-5	239.4	5402	•••••	22.5	•••••	20.2	19.5	3.0	
Bromine	328	7450	25.0	328	7200	7292	22.0	22.2	21.4	20.6	1.4	
Methyl alcohol Methyl alcohol	338 348	8947 8896	78.63	339	8828	8390	26.0	24.7	21.5	20.7	5-3	ΗĦ
Ethyl alcohol Ethyl alcohol	338 348	10400 9785	62.76	351.4	9448	944 3	26.9	26.9	21.6	20.9	6.0	AT C
Propyl alcohol	378 358	10170 10250	50.16	350	10000	10000	27.0	27.0	21.8	21.1	5.9)F VA
Water	373	9889	194.6	373	9839	9650	26.4	25.9	21.8	21.1	5-3	ΡO
Formic acid Formic acid	358 368	8503 8398	37.2	3 73	8180	•••••	21.9		21.8	21.1	0.8	RIZA
Isobutyl alcohol Isobutyl alcohol	378 388	10700 10370	48.27	381	10380	10250	27.2	26.9	21.9	21.2	6.0	TION
Acetic acid	388 303	9340 9349	57.11	391	9180	5094	23.5	12.7	22.0	21.3	2.2	• `
Amyl alcohol Amyl alcohol	388 398	11385 11210	†1 3 9	404	11080		27.4	•••••	22.1	21.5	5.9	
Benzoic acid Benzoic acid	514.4 510.7	14510 14800	†28.9	522	14000		26.8	•••••	23.1	22.7	4.1	
Mercury	628 638	13800 13750	† 24.6	631	13300	13560	21.1	21.5	23.8	23.9	2.8	
Sulphur	718 728	16643 16595	†19.1	728	16650	23160	22.7	39-3	24.3	25.0	2.3	729
_												

TABLE IV.

by means of the calculated value of α' and equation (2) of the preceding paper. The error is not great as the critical pressure only enters in as part of a correction term.

It is observed that the values of "Trouton's constant," in the column $\frac{\lambda'}{T_o}$, increase quite regularly with the temperature among all of the unassociated substances, given under Table II. With the exception of hydrogen and a few other substances, for which the values are uncertain, the values of $\frac{\lambda'}{T_o}$ increase as a linear function of the temperature, and are expressed quite exactly by the equation

$$\frac{\lambda'}{T_{\circ}} = 17 + 0.011 T_{\circ}.$$

The earlier expression

$$\frac{\lambda'}{T_{\circ}} = 8.5 \log T_{\circ}$$

includes hydrogen but the agreement in general is less satisfactory, as is shown by this more extended study.

The values of $\frac{\lambda'}{T_o}$ for the low boiling esters as shown in Table III are higher than we should expect, as though they were associated, while the higher boiling esters have a normal value, the value of $\frac{\lambda'}{T_o}$ for all of these esters being quite constant at 22.3.

For the associated compounds given in Table IV the values of $\frac{\lambda'}{T_o}$ are considerably larger than the normal value 17+0.011T. Hence the difference between these two quantities gives a measure of the association. The differences, *i. e.*, the values of $\frac{\lambda'}{T_o}$ — $(17+0.011T_o)$, are given in the last column of the tables. With the alcohols, Table IV, there is practically the same difference in the case of all of the members, indicating that they have equal association. Water, the acids and especially nitric oxide are seen to be highly associated.

CONCLUSIONS.

In this paper a large number of heats of vaporization have been calculated by means of Nernst's formula and found to be in good agreement with observed values.

730

It has been shown that the values of "Trouton's constant" increase quite regularly and according to the equation

$$\frac{\lambda'}{T_{\circ}} = 17 + 0.011T$$

The divergences in the case of the associated liquids have been considered to be a measure of the association.

In connection with this paper and the preceding one, I wish to express my very sincere appreciation to Prof. W. Nernst for continued counsel and advice.

BERLIN, March, 1906.

THE FREE ENERGY OF SOME HALOGEN AND OXYGEN COMPOUNDS COMPUTED FROM THE RESULTS OF POTENTIAL MEASUREMENTS.

BY M. DE K. THOMPSON. Received March 23, 1906.

I. INTRODUCTION.

ONE of the most important chemical problems of the present time is the determination of the free energy of formation of compounds from their constituents, for it is this quantity and not the heat evolved that is the true measure of chemical affinity. No reaction can take place of itself that is not capable of doing external work, and the maximum amount of such work which a reaction can produce at any constant temperature is called the free-energy decrease of the reacting system. Although this is a vastly more important quantity than the heat evolved by the reaction, it is one which is known in few cases, compared with those for which the heat-effect has been measured. This is partly due to the greater difficulty of determining the value of the free-energy change, and partly to the fact that its importance has not until recently been generally appreciated. Just as in thermochemical investigations, so here the most fundamental data are the (free)-energy changes attending the formation of various chemical compounds out of their elements; for from these data the free-energy change attending any reaction can be calculated by direct summation.

One method of measuring the free-energy change of a chemical reaction is to determine the conditions of its equilibrium. For a reaction of the general type $aA + bB \dots = eE + fF \dots$ the